基于脑部的事件的神经形态处理系统已成为一种有前途的技术,尤其是生物医学电路和系统。但是,神经网络的神经形态和生物学实现都具有关键的能量和记忆约束。为了最大程度地减少在多核神经形态处理器中的内存资源的使用,我们提出了一种受生物神经网络启发的网络设计方法。我们使用这种方法来设计针对小世界网络优化的新路由方案,同时介绍了一种硬件感知的放置算法,该算法优化了针对小型世界网络模型的资源分配。我们使用规范的小世界网络验证算法,并为其他网络提供初步结果
translated by 谷歌翻译
在本文中,我们提出了一种方法,以最大程度地减少训练有素的卷积神经网络(Convnet)的计算复杂性。这个想法是要近似给定的Convnet的所有元素,并替换原始的卷积过滤器和参数(汇总和偏置系数;以及激活函数),并有效地近似计算复杂性。低复杂性卷积过滤器是通过基于Frobenius Norm的二进制(零)线性编程方案获得的,该方案在一组二元理性的集合上获得。最终的矩阵允许无乘法计算,仅需要添加和位移动操作。这样的低复杂性结构为低功率,高效的硬件设计铺平了道路。我们将方法应用于三种不同复杂性的用例中:(i)“轻”但有效的转换供面部检测(约有1000个参数); (ii)另一个用于手写数字分类的(超过180000个参数); (iii)一个明显更大的Convnet:Alexnet,$ \ $ \ $ 120万美元。我们评估了不同近似级别的各个任务的总体绩效。在所有考虑的应用中,都得出了非常低的复杂性近似值,以保持几乎相等的分类性能。
translated by 谷歌翻译
我们从一组稀疏的光谱时间序列中构建了一个物理参数化的概率自动编码器(PAE),以学习IA型超新星(SNE IA)的内在多样性。 PAE是一个两阶段的生成模型,由自动编码器(AE)组成,该模型在使用归一化流(NF)训练后概率地解释。我们证明,PAE学习了一个低维的潜在空间,该空间可捕获人口内存在的非线性特征范围,并且可以直接从数据直接从数据中准确地对整个波长和观察时间进行精确模拟SNE IA的光谱演化。通过引入相关性惩罚项和多阶段训练设置以及我们的物理参数化网络,我们表明可以在训练期间分离内在和外在的可变性模式,从而消除了需要进行额外标准化的其他模型。然后,我们在SNE IA的许多下游任务中使用PAE进行越来越精确的宇宙学分析,包括自动检测SN Outliers,与数据分布一致的样本的产生以及在存在噪音和不完整数据的情况下解决逆问题限制宇宙距离测量。我们发现,与以前的研究相一致的最佳固有模型参数数量似乎是三个,并表明我们可以用$ 0.091 \ pm 0.010 $ mag标准化SNE IA的测试样本,该样本对应于$ 0.074 \ pm。 0.010 $ mag如果删除了特殊的速度贡献。训练有素的模型和代码在\ href {https://github.com/georgestein/supaernova} {github.com/georgestein/supaernova}上发布
translated by 谷歌翻译
The availability of frequent and cost-free satellite images is in growing demand in the research world. Such satellite constellations as Landsat 8 and Sentinel-2 provide a massive amount of valuable data daily. However, the discrepancy in the sensors' characteristics of these satellites makes it senseless to use a segmentation model trained on either dataset and applied to another, which is why domain adaptation techniques have recently become an active research area in remote sensing. In this paper, an experiment of domain adaptation through style-transferring is conducted using the HRSemI2I model to narrow the sensor discrepancy between Landsat 8 and Sentinel-2. This paper's main contribution is analyzing the expediency of that approach by comparing the results of segmentation using domain-adapted images with those without adaptation. The HRSemI2I model, adjusted to work with 6-band imagery, shows significant intersection-over-union performance improvement for both mean and per class metrics. A second contribution is providing different schemes of generalization between two label schemes - NALCMS 2015 and CORINE. The first scheme is standardization through higher-level land cover classes, and the second is through harmonization validation in the field.
translated by 谷歌翻译
We present a machine-learning framework to accurately characterize morphologies of Active Galactic Nucleus (AGN) host galaxies within $z<1$. We first use PSFGAN to decouple host galaxy light from the central point source, then we invoke the Galaxy Morphology Network (GaMorNet) to estimate whether the host galaxy is disk-dominated, bulge-dominated, or indeterminate. Using optical images from five bands of the HSC Wide Survey, we build models independently in three redshift bins: low $(0<z<0.25)$, medium $(0.25<z<0.5)$, and high $(0.5<z<1.0)$. By first training on a large number of simulated galaxies, then fine-tuning using far fewer classified real galaxies, our framework predicts the actual morphology for $\sim$ $60\%-70\%$ host galaxies from test sets, with a classification precision of $\sim$ $80\%-95\%$, depending on redshift bin. Specifically, our models achieve disk precision of $96\%/82\%/79\%$ and bulge precision of $90\%/90\%/80\%$ (for the 3 redshift bins), at thresholds corresponding to indeterminate fractions of $30\%/43\%/42\%$. The classification precision of our models has a noticeable dependency on host galaxy radius and magnitude. No strong dependency is observed on contrast ratio. Comparing classifications of real AGNs, our models agree well with traditional 2D fitting with GALFIT. The PSFGAN+GaMorNet framework does not depend on the choice of fitting functions or galaxy-related input parameters, runs orders of magnitude faster than GALFIT, and is easily generalizable via transfer learning, making it an ideal tool for studying AGN host galaxy morphology in forthcoming large imaging survey.
translated by 谷歌翻译
Accomplishing safe and efficient driving is one of the predominant challenges in the controller design of connected automated vehicles (CAVs). It is often more convenient to address these goals separately and integrate the resulting controllers. In this study, we propose a controller integration scheme to fuse performance-based controllers and safety-oriented controllers safely for the longitudinal motion of a CAV. The resulting structure is compatible with a large class of controllers, and offers flexibility to design each controller individually without affecting the performance of the others. We implement the proposed safe integration scheme on a connected automated truck using an optimal-in-energy controller and a safety-oriented connected cruise controller. We validate the premise of the safe integration through experiments with a full-scale truck in two scenarios: a controlled experiment on a test track and a real-world experiment on a public highway. In both scenarios, we achieve energy efficient driving without violating safety.
translated by 谷歌翻译
Different machine learning (ML) models are trained on SCADA and meteorological data collected at an onshore wind farm and then assessed in terms of fidelity and accuracy for predictions of wind speed, turbulence intensity, and power capture at the turbine and wind farm levels for different wind and atmospheric conditions. ML methods for data quality control and pre-processing are applied to the data set under investigation and found to outperform standard statistical methods. A hybrid model, comprised of a linear interpolation model, Gaussian process, deep neural network (DNN), and support vector machine, paired with a DNN filter, is found to achieve high accuracy for modeling wind turbine power capture. Modifications of the incoming freestream wind speed and turbulence intensity, $TI$, due to the evolution of the wind field over the wind farm and effects associated with operating turbines are also captured using DNN models. Thus, turbine-level modeling is achieved using models for predicting power capture while farm-level modeling is achieved by combining models predicting wind speed and $TI$ at each turbine location from freestream conditions with models predicting power capture. Combining these models provides results consistent with expected power capture performance and holds promise for future endeavors in wind farm modeling and diagnostics. Though training ML models is computationally expensive, using the trained models to simulate the entire wind farm takes only a few seconds on a typical modern laptop computer, and the total computational cost is still lower than other available mid-fidelity simulation approaches.
translated by 谷歌翻译
Automated identification of myocardial scar from late gadolinium enhancement cardiac magnetic resonance images (LGE-CMR) is limited by image noise and artifacts such as those related to motion and partial volume effect. This paper presents a novel joint deep learning (JDL) framework that improves such tasks by utilizing simultaneously learned myocardium segmentations to eliminate negative effects from non-region-of-interest areas. In contrast to previous approaches treating scar detection and myocardium segmentation as separate or parallel tasks, our proposed method introduces a message passing module where the information of myocardium segmentation is directly passed to guide scar detectors. This newly designed network will efficiently exploit joint information from the two related tasks and use all available sources of myocardium segmentation to benefit scar identification. We demonstrate the effectiveness of JDL on LGE-CMR images for automated left ventricular (LV) scar detection, with great potential to improve risk prediction in patients with both ischemic and non-ischemic heart disease and to improve response rates to cardiac resynchronization therapy (CRT) for heart failure patients. Experimental results show that our proposed approach outperforms multiple state-of-the-art methods, including commonly used two-step segmentation-classification networks, and multitask learning schemes where subtasks are indirectly interacted.
translated by 谷歌翻译
The selection of an optimal pacing site, which is ideally scar-free and late activated, is critical to the response of cardiac resynchronization therapy (CRT). Despite the success of current approaches formulating the detection of such late mechanical activation (LMA) regions as a problem of activation time regression, their accuracy remains unsatisfactory, particularly in cases where myocardial scar exists. To address this issue, this paper introduces a multi-task deep learning framework that simultaneously estimates LMA amount and classify the scar-free LMA regions based on cine displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging (MRI). With a newly introduced auxiliary LMA region classification sub-network, our proposed model shows more robustness to the complex pattern cause by myocardial scar, significantly eliminates their negative effects in LMA detection, and in turn improves the performance of scar classification. To evaluate the effectiveness of our method, we tests our model on real cardiac MR images and compare the predicted LMA with the state-of-the-art approaches. It shows that our approach achieves substantially increased accuracy. In addition, we employ the gradient-weighted class activation mapping (Grad-CAM) to visualize the feature maps learned by all methods. Experimental results suggest that our proposed model better recognizes the LMA region pattern.
translated by 谷歌翻译
Recent research in clustering face embeddings has found that unsupervised, shallow, heuristic-based methods -- including $k$-means and hierarchical agglomerative clustering -- underperform supervised, deep, inductive methods. While the reported improvements are indeed impressive, experiments are mostly limited to face datasets, where the clustered embeddings are highly discriminative or well-separated by class (Recall@1 above 90% and often nearing ceiling), and the experimental methodology seemingly favors the deep methods. We conduct a large-scale empirical study of 17 clustering methods across three datasets and obtain several robust findings. Notably, deep methods are surprisingly fragile for embeddings with more uncertainty, where they match or even perform worse than shallow, heuristic-based methods. When embeddings are highly discriminative, deep methods do outperform the baselines, consistent with past results, but the margin between methods is much smaller than previously reported. We believe our benchmarks broaden the scope of supervised clustering methods beyond the face domain and can serve as a foundation on which these methods could be improved. To enable reproducibility, we include all necessary details in the appendices, and plan to release the code.
translated by 谷歌翻译